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Abstract—The identification of influential spreaders of 
information via social networks can assist in the acceleration or 
hindrance of information dissemination, in increased product 
exposure, and in the detection of contagious disease outbreaks. 
Hub nodes, high betweenness nodes, high closeness nodes, and 
high k-shell nodes have been identified as good initial spreaders. 
However, researchers have overlooked node diversity within 
network structures as a means of measuring spreading ability. 
The two-step framework described in this paper uses a robust 
and insensitive measure that combines global diversity and local 
features (e.g., degree centrality) to identify the most influential 
social network nodes. Preliminary experiment results indicate 
that the proposed method performs well and maintains stability 
in single initial spreader scenarios associated with different 
social network datasets. 

Keywords- network diversity; entropy; social network analysis; 
k-shell decomposition; epidemic model. 

I.  INTRODUCTION 
The spreading phenomenon is found in research address-

ing a wide range of topics; examples include information 
diffusion via the Internet, viral marketing in business, 
epidemic disease identification and control, and cascading 
failures in electrical grids [1][2][3][4][5][6][7][8][9]. Since 
topological structure plays an important role in network 
spreading [1][2], identifying the most influential network 
nodes requires a robust and insensitive measure to spread 
ideas, information, or diseases as widely as possible. A 
corresponding strategy to identify spreaders can also be 
established to accelerate or hinder information dissemination, 
increase the exposure range of products, detect contagious 
outbreaks, and support the execution of early intervention 
strategies [10]. Hence, identifying key spreaders in a network 
has become an important research issue. 

In standard social network analyses, measurements of 
influence and centrality are categorized as local or global [3], 
with degree centrality considered a simple yet effective local 
centrality method for measuring the influence of one or more 
nodes [7][11]. A node or hub with a high degree of centrality 
has a large number of connections and high level of network 
influence. There are two global centralities: betweenness and 
closeness [3][7][11]. A high level of betweenness indicates 
that a large number of short paths go through a specific node; 
a high closeness value indicates a shorter average path 
between nodes. The most influential nodes in any network are 
hub, high-betweenness, and high closeness. However, results 

from a k-shell decomposition analysis indicate that nodes 
located within the core network layer are capable of spreading 
throughout a much wider range than nodes located in a 
network’s peripheral layer [1][2]. 

K-shell values are assigned to all nodes in a network, from 
core to periphery. Although each node’s spreading capability 
differs, those with similar k-shell values are perceived as 
having equal importance. Researchers have recently proposed 
new methods for ranking network spreading ability. All-
around nodes have been described as having good perfor-
mance in terms of degree, betweenness, and k-shell metrics 
[3]. An improved method has been proposed for ranking 
nodes in terms of degree centrality in identical k-shell layers 
to adjust ranking lists [8], and a method referred to as MDD 
adds ignored degree nodes (also referred to as exhausted links) 
to the decomposition procedure for purposes of ranking 
spreaders [6] (see also [3][12] regarding ranking lists). 

However, researchers have generally overlooked global 
node diversity, even though it has a positive correlation with 
the economic development of communities [13]. The entropy 
values of locations visited by users has also been shown to be 
positively correlated with the number of social ties the user 
has in a social network [14]. The network diversity values of 
degree, betweenness, and closeness centralities have been 
combined and applied to create visualizations of social 
networks [15]. Decision tree algorithms (a classification me-
thod used in machine learning in the field of computer science) 
use entropy to separate data by measuring attributes [16]. 

The present project, which was inspired by past studies of 
network diversity, uses entropy to develop a measure and to 
analyze the spreading capability of a node in a social network. 
The proposed measure analyzes the number of global layers 
and local neighborhood nodes that are affected by a node. We 
assume that k-shell decomposition [1][2] can be used as a 
global analytical method, and that nodes with high degrees of 
global diversity and centrality can penetrate multiple global 
layers and influence a large number of neighbors in the local 
layer of a network. 

For purposes of measuring node influence, a two-step 
framework is proposed to acquire global and local node 
information within a network. In the first step, global node 
information is obtained using algorithms such as a community 
detection algorithm for network community structure [5][17] 
[18], and a k-shell decomposition algorithm for core/peri-
phery network layers. Next, entropy is used to evaluate the 
global diversity of nodes in the network. In step two, local 
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node information is acquired through the use of various types 
of local centrality, including degree centrality. Finally, global 
diversity and local features can be combined to determine 
node influence. Experiments were conducted to measure 
spreading ability as the total number of recovered nodes at 
time t. The spreading capability of the proposed measure and 
the centralities of the social network analysis were compared 
using a SIR (susceptible-infective-recovered) model [2][19] 
[20]and a social network dataset [21][22][23][24] with a 
spreading simulation; a single (top-1) initial spreader scenario 
[2][25]was also considered as part of our experiments. 

II. BACKGROUND 
To represent a social network, let an undirected graph � ���� ��, where �  is the node set and �  the edge set of the 

network. Let 	 � 
�
 indicate the number of network nodes 
and � � 
�
  the number of edges. Network structure is 
represented as an adjacency matrix � � ���� and ��� � ���, 
where ��� � � if a link exists between nodes i and j, otherwise ��� � �. 

A. Local centrality 
Degree centrality is a simple yet effective method for 

measuring node influence in a network [7]. Let ����� denote 
the degree centrality of node i. A high degree centrality 
indicates a large number of connections between a node and 
its neighbors. ������ denotes the set of neighbors of node i at 
a h-hop distance. The degree centrality of node i is therefore 
defined as 

����� � 
������
 ������
�� � (1)

where 
������
 is the number of neighbors of node i at the h-
hop distance; in most cases, h=1.  

B. Global centrality 
Betweenness centrality measures the proportion of the 

shortest paths going through a node in a network [3][7][11]. 
Let  �!��� denote the betweenness centrality of node i. A high 
betweenness value indicates that a node is located along an 
important communication path. Accordingly, the betweenness 
centrality of node i is defined as 

�!��� � � "#$���"#$#%$%&�' � (2)

where "#$��� is the number of shortest paths from node s to 
node t through node i, and "#$ the total number of shortest 
paths from node s to node t. 

Closeness centrality measures the average length of the 
shortest paths from one node to other nodes [11]. Let �(��� 
denote the closeness centrality of node i. A high closeness 
centrality value indicates that a node is located in the center of 
a network, and that the average distance from that node to 
other nodes is shorter compared to nodes with low closeness 
centrality. The closeness centrality of node i is defined as 

�(��� � �)� � � )� � �	 *�+���
�� � (3)

where )� is the average length of the shortest paths from node 
i to the other nodes, and +�� is the distance from node i to node 
j. 

C. K-shell decomposition 
The k-shell decomposition [1][2] iteratively assigns a k-

shell layer value to every node in a network. During the first 
step let , � �, and remove all nodes where ���	� � , � �. 
After removal, the degrees of some remaining network nodes 
may be , � � . Nodes are continuously pruned from the 
network until there are no , � � nodes. All removed nodes 
are assigned a k-shell value of ,- � �. The next step entails a 
similar process: let , � ., prune nodes, and assign a k-shell 
value of 2 to all removed nodes. This procedure is continued 
until all network nodes are removed and assigned a k-shell 
index. This method exposes the significant features of a 
network—for example, in the case of the Internet, all nodes 
can be classified as a nucleus, peer-connected component, or 
isolated component [1]. 

D. The SIR epidemic model 
The SIR epidemiology model is widely used in multiple 

fields to study spreading processes within populations (e.g., 
information, rumors, and disease epidemics) [2][19][20]. The 
model consists of three states: susceptible �/�, infective �0�, 
and recovered ��� . Nodes in the /  set are susceptible to 
information or a disease, nodes in the 0  set are capable of 
infecting neighbors, and nodes in the � set are immune and 
cannot be reinfected. During the initial step, almost all 
network nodes are in the susceptible set /; a small number of 
infected/infective nodes (sometimes only one) act as spreaders. 
During each time step, the 0 nodes infect their neighbors at a 
pre-established infection rate, after which they become 
recovered nodes at a recovery rate of 1. Let /�2� denote the 
number of susceptible nodes at time t, 0�2� the number of 
infected nodes at time t, ��2�the number of recovered nodes 
at time t, and 3�2� � ��2� �4  the proportion of total 
immunity nodes. The total number of nodes in an SIR model 
is /�2� 5 0�2� 5 ��2� � 	.  

III. THE PROPOSED MEASURE 
The two-step framework shown in Figure 1 is proposed as 

a means of obtaining global and local node information in a 
network. In step one, global algorithms (e.g., community 
detection, graph clustering, k-shell decomposition) are used to 
analyze the global features of nodes in a network. Results are 
used to compute global node diversity. In step two, the local 
centrality (e.g., degree centrality) is used to measure local 
node features. Last, global diversity and local features are 
combined to determine the final influence of nodes in the 
network. 

In step one, the k-shell decomposition method was used as 
an example of network decomposition to obtain global 
information on nodes in the network. The k-shell values of 
nodes were obtained to calculate global diversity as a Shannon 
entropy [26], which was then used to describe how many 
network layers are affected by a node. For example, a 
maximum entropy of 6789 ,-:;< represents a case in which a 
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Figure 1.  The proposed two-step framework for computing the influence 
of network nodes. 

node is capable of connecting equally with all layers of a 
network, and a minimum entropy of 0 represents a case in 
which all connections of a node are to the same layer of a 
network. The k-core entropy (also referred to as k-shell 
entropy) of node i is defined as  

���=�� � > � ?�@A�B * 6789 ?�@A�BC#DEF
�� � (4)

?�@A�B � GA�GH A�C#DEF�� � (5)

�I��=�� � ���=��6789 ,-:;<� (6)

where =� � J�� .�K � ,-:;<L  is the k-shell value of the 
neighbors of node i, ?�@A�B the probability of the A�-core layer 
of neighbors, GA�G the number of nodes in the A�-core layer of 
the network, and �I��=�� the normalized k-core entropy for the 
required case.  

In step two, the node’s degree centrality is used to analyze 
the value of local features in the network; the degree centrality 
of neighbors is also considered. A high influence value 
indicates that a node and its neighbors have high degree 
centrality, indicating that the node is capable of reaching the 
widest possible local range. The local feature of node i is 
defined as 

M���� � 6789 N � ���O���PQRST���
U� (7)

where ���O�  is the degree centrality of neighbor j, and ���� ��� is the neighbor set of node i at a h-hop distance. M����  can be extended to become a “neighbor’s neighbor” 
version, which means that all neighbors of node i with a 2-hop 
distance are considered.  

The global diversity �� of node i makes sure the neighbors’ 
k-shell values which are much more diverse in global layers, 
and the local feature M� of node i maintains the most neighbors 
which can be infected in spreading process. Therefore, the �� 
and M� are considered at the same time to maximize spreading 
ability of node i in a network. The identified nodes are 
expected to connect to hub nodes in different k-shells of 

network. Finally, �� and M� are combined to denote the final 0V� influence of node i, defined as 0V� � �� * M�� (8)

IV. PRELIMINARY EXPERIMENTAL RESULTS 
AND DISCUSSION 

Results from an analysis of a giant connected component 
(GCC) and basic network attributes are presented in Table 1. 
The network dataset classifications used in this study were 
collaboration, communication and traditional social. The 
collaboration network datasets include two collaborating 
types which are scientific and musician collaboration. The 
first, scientific collaboration networks are collected form the 
arXiv website, and research domains cover astro physics 
(ca_astroph), condense matter physics (ca_condmat), general 
relativity and quantum cosmology (ca_grqc), high energy 
physics – phenomenology (ca_hepph) and high energy phy-
sics – theory (ca_hepth) [21]. The period of collected data is 
from January 1993 to April 2003 (124 months). The networks 
are undirected graph. The nodes are represent as authors, and 
the edges are relationships of authors who are co-authored in 
a same paper. The second, musician collaboration network 
[24], is musical collaboration in Jazz music (jazz_ 
musicians). The nodes are represent as musicians, and the 
edges are relationships of musicians who are co-recorded. 

The communication network datasets are e-mail network 
and e-mail communication network [21]. These two networks 
are directed graphs. According to the experimental re-
quirement, directed graphs are transformed to undirected 
graphs. The first, e-mail network, is collected from an EU 
research institution (email_contacts). The period of collected 
data is from October 2003 to May 2005 (18 months). The 
nodes are email addresses, and the edges are relationships of 
e-mail addresses which sent at least one message to others. 
The second, e-mail communication network, is collected from 
Enron Corporation (email_enron). The nodes and edges are 
the same as above dataset. The traditional social network 
dataset are collected from websites of [22] and [23]. The 
networks include celegansneural, dolphins, lesmis, netscience 
and polblogs networks which are often used in the fields of 
complex network and social network analysis.  

The measures used in spreading experiment were degree, 
betweenness, and closeness centralities; k-shell decom-
position; neighbor’s core (also known as coreness) [27]; 
PageRank [28]; and our proposed method. These measures are 
used to quantify importance and spreading ability of nodes in 
a network. Spreading experiment and SIR model parameters 
were as follows: 1,000 simulations for each network dataset, 
with each simulation consisting of 50 time steps, and with the 
top-1 node for each measure as the initial spreader. The W 
infection rates of the SIR model used in the experiment are 
shown in Table 1. According to previous studies, a large 
infection rate makes no difference in terms of spreading 
measures [2]. To assign a suitable infection rate for each 
network dataset, infection rates were determined by compar-
ing the theoretical epidemic threshold W$��  to the number 
used in referenced studies [27]. The recovery rate was always 
set at 1 � �, meaning that every node in the infected set 0  
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TABLE I.  DATA FROM AN ANALYSIS OF A GIANT CONNECTED COMPONENT (GCC) AND NETWORK ATTRIBUTES. 

Network N E <c> kmax <k> ksmax <ks> X r YZ[\ Y 
ca_astroph 17903 196972 0.63 504 22.00 56 13.11 2.99 0.20 0.02 0.02 
ca_condmat 21363 91286 0.64 279 8.55 25 5.12 2.63 0.13 0.04 0.05 

ca_grqc 4158 13422 0.56 81 6.46 43 4.58 2.79 0.64 0.06 0.15 
ca_hepph 11204 117619 0.62 491 21.00 238 15.93 6.23 0.63 0.01 0.05 
ca_hepth 8638 24806 0.48 65 5.74 31 3.41 2.26 0.24 0.08 0.12 

jazz_musicians 198 2742 0.62 100 27.70 29 17.27 1.40 0.02 0.03 0.04 
email_contacts 12625 20362 0.11 576 3.23 23 1.65 34.25 -0.39 0.01 0.05 

email_enron 33696 180811 0.51 1383 10.73 43 5.73 13.27 -0.12 0.01 0.05 
celegansneural 297 2148 0.29 134 14.46 10 7.98 1.80 -0.16 0.04 0.06 

dolphins 62 159 0.26 12 5.13 4 3.16 1.33 -0.04 0.15 0.15 
lesmis 77 254 0.57 36 6.60 9 4.73 1.83 -0.17 0.08 0.08 

netscience 379 914 0.74 34 4.82 8 3.47 1.66 -0.08 0.12 0.20 
polblogs 1222 16714 0.32 351 27.36 36 14.82 2.97 -0.22 0.01 0.02 

] � ^,9_ ^,_94 , degree heterogeneity [29]; W$�� � ^,_ ^,9_4 , theoretical epidemic threshold [30].

 
entered the recovered set �  immediately after infecting its 
neighbors.  

Preliminary experimental results and detailed data are 
shown in Table 2 and Figure 2. We found that the leading 
group LG can be defined as the spreading result of measures 
that are larger than the maximum result minus an inaccuracy 
factor of 1%: 

M� � `��
�?:�2� a � b?:;<�2� > cdd e ?:;<�2�f�� � g��	+�cdd � h�� �i� j� (9)

where g  is the set of measures used in the experiment, ?:;<�2� the maximum result at time t, cdd the inaccuracy rate 
(0.01), and time step 2 � k�.  

The number of recovered nodes 3�2� was used to measure 
and rank the spreading capability of various measures. The 
leading group can help determine how stable a measure is for 
identifying the influence of nodes in different networks. The 
measures inside the leading group had approximately the 
same spreading capability. The average rank in Table 2 was 
used to place the expected rank in different networks; a 
measure with a lower average rank was viewed as having 
better discrimination in terms of identifying good spreaders. 

According to the inside leading group number (an 
indicator of measure stability), the proposed method 
performed well in terms of identifying the most influential 
nodes in different networks. Based on our preliminary 
experimental results, the proposed method is capable of 
identifying nodes that serve as good spreaders with global 
diversity in a network. Not only was our proposed method 
within the leading group, it also had a better ranking compared 
to other measures within the leading group. The identified 
influence spreaders were capable of reaching large numbers 
of network nodes through their diverse global connections and 
of affecting all network layers. The degree centrality of a node 
and its neighbors can be used to maintain the number of 
contacted nodes in the local layer of a network. However, 
important differences were noted among measures. For 
example, the closeness measure performed well in the top-1 

position of the ca_hepth and email_enron networks (Fig. 2, 
Table 2), but not in the ca_grqc, jazz_musician, or netscience 
networks. Since the characteristic the measure wanted to 
capture did not exist in those networks, the most influential 
spreaders could not be identified. 
Although the proposed method underscores the robustness 
and stability of identifying the influence nodes of different 
networks, we acknowledge two research limitations. First, in 
cases of global node diversity and lower node degree 
centrality, the spreading capability of nodes is constrained and 
dependent on the degree centrality of its neighbors. The 
influence of a node is limited to the local layer of a network 
when the degree centrality of its neighbors is lower. The 
spreading range is also limited when a node’s connected 
neighbors are located in the network’s peripheral layer. 
However, the spreading range of nodes may be wide when the 
node’s neighbors are located near the hub and within the core 
network layers, and when information and ideas can still be 
spread to infect a large number of nodes throughout the 
network. 

Second, maximum k-shell values are lower and network 
sizes considerably smaller in the absence of global diversity 
in a network. For example, as shown in Table 2, the nodes in 
the dolphins network could not be identified. The spreading 
ability of nodes identified by our proposed method declines to 
the degree centrality (ignoring the first term), and the 
influence of nodes is limited to the local layers of networks. 
In the absence of global diversity, equation (8) becomes 0V� lM� , which favors the local layers of networks (i.e., degree 
centrality). The spreading ranges of nodes were also limited 
to local network layers when nodes were located in peripheral 
layers or inside local and dense clusters. However, broad 
spreading ranges were observed for nodes located in the 
network’s core layers [2]. In addition, the �I��=�� normalized 
global diversity values produced by our proposed method 
were similar to participation coefficients reported by 
Teitelbaum et al. [31], and the high global diversity of nodes 
that we observed were similar in terms of role with connector 
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TABLE II.  SIMULATION RESULTS FROM SPREADING EXPERIMENTS USING DIFFERENT NETWORKS. 

Network (GCC) m�Z� and t=50 
Degree Betweenness Closeness k-core Neighbor-core PageRank Proposed 

ca_astroph 0.15213 0.14995 0.15213 0.12057 0.15222 0.15231 0.14806 
ca_condmat* 0.04865 0.04874 0.04806 0.02787 0.05202 0.04883 0.05271 

ca_grqc* 0.14712 0.11785 0.11696 0.14564 0.14771 0.07617 0.14643 
ca_hepph 0.19531 0.19407 0.19522 0.19513 0.19505 0.19513 0.19436 
ca_hepth* 0.11313 0.10635 0.13691 0.06587 0.06906 0.11194 0.13592 

jazz_musicians 0.30375 0.30504 0.30146 0.21917 0.31491 0.30553 0.31392 
email_contacts* 0.04876 0.05335 0.05382 0.05354 0.05382 0.01367 0.05411 

email_enron 0.10115 0.10096 0.16201 0.16184 0.16201 0.10037 0.16193 
celegansneural 0.19393 0.19195 0.19116 0.06447 0.19264 0.20111 0.19752 

dolphins 0.11071 0.07546 0.07955 0.07027 0.10193 0.10892 0.08974 
lesmis 0.08854 0.08903 0.08932 0.07926 0.07537 0.08785 0.09051 

netscience* 0.07964 0.04835 0.04736 0.08161 0.08073 0.04727 0.08142 
polblogs* 0.13403 0.09905 0.13394 0.08717 0.13472 0.09896 0.13541 

Inside leading group number: 9 7 9 5 11 7 12 
Average rank: 3.4615 5.0 3.8461 5.4615 3.0 4.6923 2.6153 

*, spreading dynamic result shown in Figure 4; Bold, measurement result is inside the leading network group; Subscript, rank of network in the measurement.

 
hubs and kinless hubs, both of which have distinct par-
ticipation coefficients. 

V. CONCLUSION 
In this paper we described our proposal for a two-step 

framework for calculating the influence of network nodes. In 
step one, a global algorithm is used to analyze node global 
information, with the entropy concept from information 
theory being introduced to measure node global diversity. 
Affected global network layers can be identified using k-core 
entropy. In step two, the degree centrality of nodes and their 
neighbors are considered simultaneously in order to maintain 
the number of affected neighbors in the local layer of a 
network. In the final step, global diversity and local features 
are combined to determine the influence of nodes in the 
network. Our preliminary experimental results indicate that 
the proposed method performs well and maintains stability in 
the leading groups of different networks. In other words, the 
proposed method is capable of identifying the most influential 
nodes as initial spreaders that disseminate information, ideas, 
or diseases in different networks. 

Our plans are to add considerable detail to our analysis, to 
clarify how the proposed method is affected by network 
structure, and to verify whether exists a linear or trade-off 
relationship between global diversity and local feature. For 
example, global algorithms such as community detection 
algorithms can be used to analyze and obtain global 
information on community network structures, and to 
determine how factors such as position and node role [31] 
affect the degree to which spreaders distribute information or 
diseases throughout a network. We also plan to study 
strategies associated with multiple initial spreaders in 
networks. Since overlapping infected areas for selected 
spreaders must be minimized [2], a multiple initial spreader 

scenario may either accelerate or hinder spreading within a 
network. 
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